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Abstract—Episode Rule Mining is a popular framework for
discovering sequential rules from event sequential data. However,
traditional episode rule mining methods only tell that the conse-
quent event is likely to happen within a given time intervals after
the occurrence of the antecedent events. As a result, they cannot
satisfy the requirement of many time sensitive applications, such
as program security trading due to the lack of fine-grained
response time. In this study, we come up with the concept of
fixed-gap episode to address this problem. A fixed-gap episode
consists of an ordered set of events where the elapsed time
between any two consecutive events is a constant. Based on this
concept, we formulate the problem of mining precise-positioning
episode rules in which the occurrence time of each event in the
consequent is clearly specified. In addition, we develop a trie-
based data structure to mine such precise-positioning episode
rules with several pruning strategies incorporated for improving
the performance as well as reducing memory consumption.
Experimental results on real datasets show the superiority of
our proposed algorithms.

I. INTRODUCTION

Frequent episode mining (FEM) has emerged as a popular
research topic in the data mining community. Given a single
event sequence, FEM aims to identify all frequent episodes
with the frequency larger than a given threshold. Here an
episode (also known as serial episode [3]) is a totally ordered
set of events. One basic problem in FEM is to find episode
rules from frequent episodes. Given a frequent episode α, a
valid episode rule in the form of lhs −→ rhs can be generated
in a straightforward manner: The antecedent lhs is the prefix
of α and the consequent rhs is the last event in α, if its
confidence is larger than a user-specified threshold.

Figure 1 gives a running example for episode rule mining,
where capital letters denote events and arabic numbers denote
timestamps. In this sequence, we see three occurrences of
episode 〈D, A, B〉 when maximum occurrence window size
threshold is set to 4. Then, if we take B as the consequent,
an episode rule 〈D, A〉→〈B〉 can be generated. This rule tells
that it is within 2 time intervals after the occurrence of 〈D,
A〉 that B will occur (with 100% probability). However, with
such a rule discovered by traditional methods, we only know
the approximate time range of the occurrence of rhs . In many
real world applications, such rules are not practically useful
without specifying the exact time of rhs . In this situation,
we require the exact time to trigger the responses of the
consequent automatically.

In this paper, we study the problem of Mining Precise-
positioning Episode Rules (MIPER) where we need to specify
the exact time instead of the approximate time range of the
consequent events. This precise-positioning episode rule min-
ing problem is motivated by some time-sensitive applications.
One example application is program security trading. Suppose
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Fig. 1. The running example of event sequence.

the sequence in Figure 1 describes daily change events of a
stock market, and B refers to an event depicting the price of
a stock increases. In the above example, we cannot decide the
exact time to buy this stock after the occurrence of 〈D, A〉.
One choice is that we buy the stock at the first day and hold
it for two days after 〈D, A〉 happens. However, we might lose
money if the stock slumps significantly on the first day and
rebounds slightly (B occurs) on the next day. Here though this
rule makes a correct prediction, we would still lose money.

To address this problem, we first introduce the concept
of fixed-gap episode, which is defined as a tuple of events
such that the time span between any two consecutive events is
specified. Formally, the goal is to mine a precise-positioning
episode rule lhs

Δt−−→ rhs with the following two constraints:
1) rhs is a fixed-gap episode; 2) the elapsed time between the
last event in lhs and the first event in rhs is Δt.

While precise-positioning episode rules could provide rich-
er information, the performance of mining such rules would
suffer from “combination explosion”. Due to the constraints of
exact time, the number of candidates for precise-positioning
episode rules would be much larger than that of traditional
episode rules.

In this paper, we first propose an enumeration based frame-
work by first mining frequent minimal-occurrence episodes
and frequent fixed-gap episodes on the whole sequence, and
then concatenating each pair of a minimal-occurrence episode
and a fix-gap episode to generate a candidate of precise-
positioning rule. We further observed that for a precise-
positioning episode rule, the consequent must occur after the
antecedent. Hence we can improve the proposed framework
by mining fixed-gap episodes only after the occurrences of
frequent minimal-occurrence episodes. Along this route, we
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develop a trie-based framework to mine precise-positioning
episode rules directly based on frequent minimal-occurrence
episodes partitioning.

The major contributions of this work include:

• We address the new problem of mining precise-
positioning episode rules to satisfy the requirement
of time-sensitive applications in the real world.

• We design a trie-based framework to compactly store
valid precise-positioning episode rules and perform
efficient mining with effective pruning strategies.

• We demonstrate the efficiency of the proposed algo-
rithms based on real-world datasets and the effective-
ness of precise-positioning episode rules on practical
application.

II. DEFINITIONS AND PROBLEM STATEMENT

In this section, we propose some new concepts about
precise-positioning episode rules, and formulate the mining
problem.

Definition 1 (Precise-positioning Episode Rule). A
precise-positioning episode rule (PER) Γ is an implication of

the form α
Δt−−→ β, where α=〈eα1

, · · · , eαl
〉 is a frequent

minimal occurrence based episode, and β=(〈eβ1
, · · · , eβk

〉,
〈Δt1, · · · , Δtk−1〉) is a fixed-gap episode. Also, it must satisfy
the following two conditions: (1) the elapsed time between
eαl

and eβ1
is a fixed value Δt; (2) For a given threshold

ε,
∑k−1

i=1 Δti + Δt ≤ ε. Here, ε is a user-specified threshold
named maximum window size for consequent occurrence.

Definition 2 (Occurrence of PER). Given a precise-

positioning episode rule Γ=α
Δt−−→β, a minimal occur-

rence [4] (MEO for short) of (α, [tα1 , tαp ]), and a Fixed-
gap Episode Occurrence (FEO for short) of (β, [tβ1 , tβq ]),
we call [tα1 , tαp , tβ1 , tβq ] the occurrence of Γ if and only
if tβ1−tαp=Δt. This occurrence is denoted as (Γ, [tα1 , tαp ,
tβ1

, tβq
]), and tα1

and tβq
are called start time and end time,

respectively. The set of all occurrences of Γ is denoted as
ocSet(Γ).

Definition 3 (Valid PER). The support of PER Γ=α
Δt−−→ β, denoted as sp(Γ), is defined as the number of its

distinct occurrences. A PER is valid if its confidence,
sp(Γ)
sp(α) , is

not less than a user-specified minimum confidence threshold
min conf .

Problem statement of MIPER. Given an event sequence
�S, the problem of MIPER is to find all valid PER over �S.

III. THE SOLUTION TO MIPER

In this section, we propose several solutions to MIPER.
Here we always set the parameters as min sup = 3, ε = 5
and min conf = 0.6 to show the running example in this
section unless otherwise specified.

A. The Enumeration Approach

The most intuitive way to solve the MIPER problem is an
enumeration based approach, denoted as MIP-ENUM.

The basic idea of MIP-ENUM is to enumerate PER
candidates by concatenating discovered MEOs with FEOs
and subsequently filter the infrequent ones according their
confidence values. By indexing the FEO and MEOs using
their start and end times, we can form a PER occurrence by
concatenating contiguous MEO and FEO thus generate a PER
candidate. Finally, the filtering step is carried out to output all
valid PERs.

In this paper, we design a level-wise method which mines
fixed-gap k + 1-episodes based on the frequent fixed-gap k-
episode. The main idea of such approach is that for every
frequent fixed-gap k-episode β, every occurrence of β is
considered independently. For each FEO (β, [tβ1

, tβk
]), we

scan each event set Ei on �S where i ∈ [tβk
+1, tβ1

+ ε− tβk
]

and generate new fixed-gap k + 1-episode occurrences. After
that, we filter infrequent fixed-gap k+1-episodes and keep the
frequent ones for the next iteration.

B. The Trie-based Approaches

The enumeration approach is very time consuming due
to the large search space. Here we introduce a more effi-
cient approach, named MIP-TRIE. In MIP-TRIE, we design
a trie-based framework, named PER-trie, to store precise-
positioning episode rules compactly. The features of PER-trie
are also helpful to facilitate the efficiency of discovering valid
PERs.

1) Structure of PER-trie: Given a frequent minimal-
occurrence episode α, a PER-trie, denoted as Tα is a trie-like
data structure which stores valid precise-positioning episode
rules whose antecedent is α.

The root node r of a PER-trie Tα, denoted by
(r .episode:r .tlist), consists of two fields: the episode field
r.episode and the end time set field r.tlist. Here r.episode
registers the minimal-occurrence episode α; and r.tlist records
all the end times of minimal occurrence of α.

The non-root node q, denoted by (q .event :q .tlist), consists
of two fields: the event field q.event and the occurrence time
set field q.tlist. Here q.event registers which event this node
represents, and q.tlist is a set containing the occurrence time
of such event after a fixed distance to the elements of p.tlist,
where p is the parent node of q.

The edge between a parent node p and its child node q
has a distance field, which is a positive integer to record the
length between the two nodes. We denote it as d(p, q). In the
PER-trie, for any element t′ ∈ q.tlist, there exists an element
t ∈ p.tlist such that t′ − t = d(p, q).

Then given a PER-trie Tα, a PER can be represented by a
path from the root node to any non-root node. Specifically, we
assume that the path from the root r to a non-root node q is
through the nodes q1 ⇒ q2, . . . , ⇒ qk. Then, the node q refers

to a precise-positioning episode rule α
d(r,q1)−−−−→ (〈q1.event , . . . ,

qk.event , q.event〉, 〈d(q1, q2), d(q1, q2), . . . , d(qk, q)〉).
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Fig. 2. Complete PER-trie of T〈D,A〉.

2) Features of PER-trie: Here we introduce two essential
features of PER-trie. Such features will be helpful to further
improve the performance of the mining process.

Lemma 1: [Support Counting] Given a non-root node q′

on a PER-trie Tα, the support of the PER associated with q′

is equal to the cardinality of the occurrence time set field of
q′, i.e. |q′.tlist |.

Lemma 2: [Downward Closure] Given a pair of parent-
child node p (parent) and q (child) in a PER-trie, the support
of the rule associated with p is no less than that of q.

3) Mining Valid PER with PER-trie: Here we introduce
MIP-TRIE algorithm which directly discovers valid precise-
positioning episode rules from the event sequence without
generating PER candidates. The key ingredients to the efficien-
cy of MIP-TRIE are (i) frequent minimal-occurrence episodes
partitioning, (ii) the usage of PER-trie to store valid PERs and
(iii) mining valid PERs with pruning strategies.

The MIP-TRIE algorithm is divided into two phases. The
first phase is to mine frequent minimal-occurrence episodes as
possible antecedents of PER. The second phase, subsequently,
is to mine valid PERs based on each possible antecedent α.
Its output is a complete PER-trie that stores all valid PERs in
the input sequence whose antecedent is α.

MIP-TRIE benefits from the minimal-occurrence episode
based partitioning. Compared with MIP-ENUM, MIP-TRIE
only needs to discover corresponding fixed-gap episodes on
subsequences after antecedents rather than the whole sequence,
which alleviates the number of useless fixed-gap episodes.

MIP-TRIE in fact transfers the valid PER mining process
to a complete PER-trie construction for each frequent minimal-
occurrence episode. To perform efficient constructions, we
adpot two different manners. The first one is DFS [2] man-
ner (denoted as MIP-TRIE(DFS) specifically), and the other
one, denoted as MIP-TRIE(PRU), is a novel hybrid manner
with pruning techniques.

For MIP-TRIE(DFS), particularly, we start from the root
node of a PER-trie, and recursively expand nodes on the PER-
trie until no more nodes can be expanded. It firstly creates
a root node r with a given antecedent α. Then, an internal
function ExtendNode is invoked starting from r to perform
node expansions. For a node q to be extended, it first calculates
the distance d(q, r). Then upper bound of the number of
enumerations is correspondingly ε− d(q, r). Next, it conducts
on multiple rounds of enumerations. Firstly, an offset value is
appended to every element in q.tlist to get a set of variables
position List . All event sets occurring at time position List
are then collected. Among these event sets, it searches events
with frequency higher than min freq and store them to a

set E′. For any event e′ ∈ E′, it extends a new node q′

as the child of q, which represents a new discovered valid
PER. Once q′ is generated, the same function is immediately
invoked recursively in which q′ is taken as the node for the
next extension. The construction process will stop when such
an event set E′ cannot be found any longer.

Although MIP-TRIE(DFS) can significantly outperform
MIP-ENUM by avoiding the generation of candidates, it may
scan repetitive positions over the input sequence to collect
event sets as well as their frequencies. In order to eliminate
duplicate event sets and sequence scans, we propose MIP-
TRIE(PRU) whose basic idea is to adjust the order of node
extensions and reuse intermediate results of the established
PER-trie as much as possible during the traversing process.

We give the pseudo-code of such method in Algorithm 1.It
firstly expands the root node r via the same way as that in
MIP-TRIE(DFS) and then performs ε iterations in the outer
loop. But unlike the DFS based method, when reaching a new
child node (denoted by q′, of r), a top-down inner traverse
procedure is triggered. That is, for every non-root node w
on the established PER-trie except that q′, it computes a
variable set to record the time stamps that are needed to be
checked (Line 13). Then if the cardinality of the intersection of
such a variable set and q′.tlist exceeds the minimum frequency
threshold, a new child node will be directly generated to the
node w, and a new valid PER can be derived (Line 14–17).
Otherwise, all descendants of w can be safely pruned according
to the Lemma 2 (Line 19). Eventually, it will return a complete
PER-trie after the outer loop is finished.
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Fig. 3. The result for performing Alg. 1 to the PER-trie T〈D,A〉 when i =
5. Node q′ is firstly expanded. Node w1–w3 and w6 are traversed and derive
a new expanded node w′

2. Traverse on node w4, w5 and w7 are pruned.

IV. EXPERIMENTS

We evaluate efficiency and effectiveness of the proposed
algorithms. Experiments on efficiency are performed on a
Linux server with 1.87GHz Intel Xeon E7-4807 CPU and
128GB memory. All of the algorithms are implemented in Java.

Efficiency Evaluation: The popular benchmark Retail 1

is used to evaluate the efficiency of the proposed algorithms.
The compared methods include MIP-ENUM and two versions
of MIP-TRIE since there is no prior work of PER mining.
For mining frequent minimal-occurrence episodes, the recent
MESELO [1] algorithm was adopted. We tuned parameters
and demonstrate their impacts on performance. In each com-
parison, we vary one parameter while keep the others fixed.

Fig. 4 exhibits the results on time efficiency with vary-
ing parameters. From these results, we can observe MIP-
TRIE series algorithms are significantly more efficient than

1http://fimi.cs.helsinki.fi/data/
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Algorithm 1: MIP-TRIE(PRU)
Input: α: a frequent minimal-occurrence episode
ETα: the set of end time of each MEO of α
ε: the threshold of maximum window size for consequent occurrence
min freq : minimum frequency threshold generating a valid PER
Output: Tα: the complete PER-trie w.r.t antecedent α
begin1

build a root node r of Tα where r.episode←α and r.tlist← ETα2
for i = 1 to ε do3

position List ← {t′ | t′ = t+ i, t ∈ r.tlist}4
scan �S on each time stamp in position List and get an event set5
E′ such that the frequency of every event in E′ is not less than
min freq
foreach e′ ∈ E′ do6

q′.event ← e′7
q′.tlist ← occurrence time of e′ in position List8
put q′ as the child of r9
foreach non-root node w of Tα except q′ do10

d ← distance between r and w11
if i > d then12

tmp List={t′ | t+ i − d, t ∈ w.tlist}13
S ← tmp List ∩ q′.tlist14
if |S| ≥ min freq then15

w′.event ← q′.event , w′.tlist ← S16
put w′ as the child of w17

else18
/* Pruning with Lemma 2*/19

end20

MIP-ENUM. Moreover, MIP-TRIE(PRU) outperforms MIP-
TRIE(DFS) because of its improved trie construction strategy
and powerful pruning techniques.
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(c) min conf

Fig. 4. The efficiency comparison results.

Effectiveness of PER: Next we evaluate the effectiveness
of PER on real sequences from China stock market. Here
we consider 150 related industry sector pairs and discretize
their daily index change ratios into event sequences. In more
detail, we discretize the change ratio values into two categories
and generate two kinds of events: UP (if the price increases)
and DN (otherwise) for each sector. Finally, we obtain 150
event sequences. The data we used involves 1,129 trading days
ranging from Jan. 1, 2010 to Aug. 29, 2014. We generate the
training and test sets from this dataset as follows: The data
from the first 4 years (including 967 trading days) are taken
as the training set, and the rest (including 162 trading days)
are used as the test set. Then we mine valid PER for every
event sequence in the training set with the following parameter
settings: min sup = 145, min conf = 0.5 and ε = 5. We
empirically emphasize that compact rules are more convincing.
It is difficult to believe a rule telling an industry sector may
go up 15 days after viewing an antecedent happen.

Every sequence reported multiple valid PERs under our
settings. Here we focus on demonstrate the difference of PER
and traditional episode rules. Specifically, we degrade PER
with single event in consequent to traditional episode rule (de-
noted as TDR hereafter) and demonstrate their differences
in predictive ability. In order to show their differences more
clearly, we collected such rules whose Δt = 5 from top 50

PER in the training sets ranking by confidence, and construct
an experimental set. Since the consequent of each rule in this
experimental set has only one event, we directly conceal the
Δt of every rule to make it become a TDR, and evaluate its
precision on the test set. We use the following strategy for
evaluation: given a TDR, we trade immediately according to
the event saying in its consequent after its antecedent appears.
Then we hold the position until the expected event happens
or the maximum window size for consequent occurrence is
reached. We can get the precision of a rule by computing the
return in the process of the holdings.

�
Fig. 5. The winning rate of PER compared with TDR.

For making a fair comparison between PER and TDR, we
close out when the float loss exceeds a threshold during the
holdings by a TDR. We tune such threshold and show the
results in Figure 5. The results illustrate the average winning
rate of PER at top k under different stop-loss thresholds.
We argue that PER has a better average precision when this
measure is higher than 50%. From the figure, we can see that
PER performs better than TDR under all the settings, though
the winning rate decreases as k increases. Here we vary the
stop-loss threshold in a small range, i.e. 0 to 0.3%, and the
reason is that the daily price change ratio of each industry
sector is small. We investigated the data and found 0.3% is
ranking at around 33th percentile among all ranked daily price
change ratios of industry sectors. We can conclude from this
comparison that with the constraints added by PER, precisions
of rule could make valid contributions.

V. CONCLUSION

In this paper, we formulate the problem of mining precise-
positioning episode rules (MIPER), which is helpful for ap-
plications where automatic responses are needed in a timely
manner. We propose one enumeration approach for MIPER
and further devise two approaches based on a compact trie
structure to enhance the pruning power as well as reduce
execution time of the mining process. Experiments evaluate
the efficiency of the proposed methods. Also, the effectiveness
of precise-positioning episode rules is clearly demonstrated in
a case study about China stock market.
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